確率分布の期待値や分散に関する諸公式をしょっちゅう忘れるので,記憶に定着させるために諸公式を導出してみたメモ.以下の式は,確率変数\(X\)と\(Y\)がどんな確率分布に従っているかに依らず導き出される性質である.
期待値(平均)と分散
確率変数\(X\)の確率密度関数は\(f(x)\)とする.
$$ E(X) = \int_{-\infty}^{\infty} x f(x) dx $$
\begin{align}
V(X) &= \int_{-\infty}^{\infty} (x – \mu)^2 f(x) dx \\
&= \int_{-\infty}^{\infty} x^2 f(x) dx -2 \int_{-\infty}^{\infty} \mu_x x f(x) dx + \mu^2 \int_{-\infty}^{\infty} f(x) dx \\
&= E(X^2) -2 (E(X))^2 + (E(X))^2 \\
&= E(X^2) – (E(X))^2
\end{align}
V(X) &= \int_{-\infty}^{\infty} (x – \mu)^2 f(x) dx \\
&= \int_{-\infty}^{\infty} x^2 f(x) dx -2 \int_{-\infty}^{\infty} \mu_x x f(x) dx + \mu^2 \int_{-\infty}^{\infty} f(x) dx \\
&= E(X^2) -2 (E(X))^2 + (E(X))^2 \\
&= E(X^2) – (E(X))^2
\end{align}
諸公式の導出
確率変数\(X\)の確率密度関数を\(f(x)\),\(E(X) = \mu_x\) ,\(V(X) = \sigma_x^2\)とする.また,確率変数\(Y\)の確率密度関数を\(g(x)\),\(E(Y) = \mu_y\) ,\(V(Y) = \sigma_y^2\)とする.また,確率変数\(X\)と\(Y\)の同時確率密度関数を\(p(x, y)\),共分散\(Cov(X,Y)\)をとする.このとき,
\begin{align}
E(X+Y)&=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y) p(x, y) dx dy \\
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x p(x, y) dx dy + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y p(x, y) dx dy \\
&= \int_{-\infty}^{\infty} x p(x) dx + \int_{-\infty}^{\infty} y p(y) dy \\
&= E(X) + E(Y)
\end{align}
E(X+Y)&=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y) p(x, y) dx dy \\
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x p(x, y) dx dy + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y p(x, y) dx dy \\
&= \int_{-\infty}^{\infty} x p(x) dx + \int_{-\infty}^{\infty} y p(y) dy \\
&= E(X) + E(Y)
\end{align}
\begin{align}
E(aX+b)&=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (ax+b) f(x) dx \\
&= a \int_{-\infty}^{\infty} xf(x)dx + b \int_{-\infty}^{\infty} f(x)dx\\
&= aE(X) + b
\end{align}
E(aX+b)&=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (ax+b) f(x) dx \\
&= a \int_{-\infty}^{\infty} xf(x)dx + b \int_{-\infty}^{\infty} f(x)dx\\
&= aE(X) + b
\end{align}
\begin{align}
V(aX+b)&= E((aX+b)^2) – (E(aX+b))^2 \\
&= E(a^2X^2 + 2abX + b^2) – (aE(X)+b)^2 \\
&= a^2E(X^2) + 2abE(X) + b^2 – a^2E(X)^2 – 2abE(X) – b^2 \\
&= a^2(E(X^2) – E(X)^2) \\
& = a^2 V(X)
\end{align}
V(aX+b)&= E((aX+b)^2) – (E(aX+b))^2 \\
&= E(a^2X^2 + 2abX + b^2) – (aE(X)+b)^2 \\
&= a^2E(X^2) + 2abE(X) + b^2 – a^2E(X)^2 – 2abE(X) – b^2 \\
&= a^2(E(X^2) – E(X)^2) \\
& = a^2 V(X)
\end{align}
\begin{align}
Cov(X,Y)&= E((X-\mu_x)(Y-\mu_y)) \\
&= E(XY-\mu_xY-X\mu_y+\mu_x\mu_y) \\
&= E(XY)-E(\mu_x)E(Y)-E(X)E(\mu_y) +E(\mu_x)E(\mu_y)\\
& = E(XY) – E(X)E(Y)
\end{align}
Cov(X,Y)&= E((X-\mu_x)(Y-\mu_y)) \\
&= E(XY-\mu_xY-X\mu_y+\mu_x\mu_y) \\
&= E(XY)-E(\mu_x)E(Y)-E(X)E(\mu_y) +E(\mu_x)E(\mu_y)\\
& = E(XY) – E(X)E(Y)
\end{align}
\begin{align}
V(X+Y)&= E((X+Y)^2) – (E(X+Y))^2 \\
&= E(X^2 + 2XY + Y^2) – (E(X) + E(Y))^2 \\
&= E(X^2)+2E(XY)+E(Y^2) – (E(X)^2 + 2E(X)E(Y) + E(Y)^2) \\
& = (E(X^2)-E(X)^2) + (E(Y)^2 – E(Y)^2) + 2(E(XY) – E(X)E(Y)) \\
& = V(X) + V(Y) + 2Cov(X,Y)
\end{align}
V(X+Y)&= E((X+Y)^2) – (E(X+Y))^2 \\
&= E(X^2 + 2XY + Y^2) – (E(X) + E(Y))^2 \\
&= E(X^2)+2E(XY)+E(Y^2) – (E(X)^2 + 2E(X)E(Y) + E(Y)^2) \\
& = (E(X^2)-E(X)^2) + (E(Y)^2 – E(Y)^2) + 2(E(XY) – E(X)E(Y)) \\
& = V(X) + V(Y) + 2Cov(X,Y)
\end{align}
※ 確率変数\(X\)が正規分布\(N(\mu, \sigma^2)\)に従うとき,確率変数\(aX+b\)は平均\(a\mu +b)\),分散\(a^2\sigma^2\)の正規分布に従う.しかし,\(E(aX+b)=aE(X)+b\)をもって\(aX+b\)が正規分布に従うとは言えない.確率変数\(aX+b\)が正規分布に従うことは,別途証明が必要(正規分布の再生性).